Division without remainders

Worked Example

$$
248 \div 2
$$

Steps

We write as		\mathbf{H}	\mathbf{T}	\mathbf{U}	
		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{4}$	
	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{8}$	

1. Start at the hundreds column and say ' 2 divided by 2 is 1 ' or 'How many 2 s are in 2 ? There is 1 two in $\mathbf{2}^{\prime}$.
2. Write 1 in the hundreds column answer box above the line.
3. Move to the tens column and say ' 4 divided by 2 is 2 ' or 'How many $2 s$ are in 4 ? There are 2 twos in 2^{\prime}.
4. Write 2 in the tens column answer box above the line.
5. Move to the units column and say ' 2 divided by 2 is 4 ' or 'How many 2 s are in 8 ? There are 4 twos in $\mathbf{2}^{\prime}$.
6. Write 4 in the units column answer box above the line.

The answer is 124.

Division with remainders

Worked Example

$$
579 \div 2
$$

We write as		H	T	U	
		$\mathbf{1}$	3	5	r 4
	5	6	17	29	

Steps

1. Start at the hundreds column and say '6 divided by 5 is $\mathbf{1}$ remainder 1^{\prime} or 'How many 5 s are in 6 ? There is 1 five in 5 and one left over'.
2. Write 1 in the hundreds column answer box above the line.
3. Put the remainder 1 into the tens column in front of the 7 to make 17.
4. Move to the tens column and say ' 17 divided by 5 is 3 remainder 2 ' or 'How many 5s are in 17? There are 3 fives in 17 and two left over'.
5. Write 3 in the tens column answer box above the line.
6. Put the remainder $\mathbf{2}$ into the units column in front of the $\mathbf{9}$ to make 29.
7. Move to the units column and say ' 29 divided by 5 is 5 remainder 4' or 'How many 5s are in 29? There are 5 fives in 29 and 4 left over'.
8. Write 5 in the units column answer box above the line and put the remainder 4 in the box next to the units answer box above the line. The answer is $\mathbf{1 3 5}$ remainder 4.
